Operator-valued matrices with free or exchangeable entries
نویسندگان
چکیده
Nous étudions des matrices dont les entrées sont variables libres ou échangeables d’un W*-espace de probabilités tracial. Plus précisément, nous considérons Wigner et Wishart avec à valeurs opérateurs montrons la convergence quantitative, vers semi-circulaires sur une certaine sous-algèbre, en termes transformées Cauchy distance Kolmogorov. Comme applications directes, obtenons taux explicites pour large classe aléatoires par blocs indépendants corrélés. Notre approche repose extension non-commutative méthode Lindeberg techniques d’interpolation gaussiennes opérateurs.
منابع مشابه
Circular law for random matrices with exchangeable entries
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملOperator-valued Free Fisher Information of Random Matrices
We study the operator-valued free Fisher information of random matrices in an operator-valued noncommutative probability space. We obtain a formula for Φ M2(B) (A,A,M2(B), η), where A ∈ M2(B) is a 2 × 2 operator matrix on B, and η is linear operators on M2(B). Then we consider a special setting: A is an operator-valued semicircular matrix with conditional expectation covariance, and find that Φ...
متن کاملAlmost Hadamard Matrices with Complex Entries
We discuss an extension of the almost Hadamard matrix formalism, to the case of complex matrices. Quite surprisingly, the situation here is very different from the one in the real case, and our conjectural conclusion is that there should be no such matrices, besides the usual Hadamard ones. We verify this conjecture in a number of situations, and notably for most of the known examples of real a...
متن کاملRanks of matrices with few distinct entries
An L-matrix is a matrix whose off-diagonal entries belong to a set L, and whose diagonal is zero. Let N(r, L) be the maximum size of a square L-matrix of rank at most r. Many applications of linear algebra in extremal combinatorics involve a bound on N(r, L). We review some of these applications, and prove several new results on N(r, L). In particular, we classify the sets L for which N(r, L) i...
متن کاملExtension of matrices with Laurent polynomial entries
Let P and Q be nr, r n matrices with Laurent polynomial entries. Suppose that Q T (z)P (z) = I r , z 2 Cnf0g. This note provides an algorithmatic construction of two n(nr) matrices G and H with Laurent polynomial entries such that the nn matrices
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2023
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/22-aihp1255